Open Journal Systems

Drought responses on growth, proline content and root anatomy of Acacia auriculiformis Cunn., Tectona grandis L., Alstonia spectabilis Br., and Cedrela odorata L.

Rina Laksmi Hendrati, Diah Rachmawati, Asri Cahyaning Pamuji


Global warming causes extreme weather and temperature leading to drought. Identification of drought adaptive species is essential. This research is aimed to examine growth, proline content and root anatomy of Acacia auriculifomis, Tectona grandis, Alstonia spectabilis, and Cedrela odorata and to compare the most adaptive species under drought condition. Controlled dry treatments applied were 10, 20, 30, and 40 days unwatered, and compared with control plants, each with 3 replications. Characteristics measured were height, diameter, leaf number and area, root proline content and root tracheal diameter. Data and samples were collected every 10 days. Growth and physiological data were analyzed by using T-Test, while anatomical data were analyzed by using ANOVA and DUNCAN test. Results showed that drought on A. auriculiformis, T. grandis, A. spectabilis, and C. odorata has decreased plant height, stem diameter and number of leaves but increasing proline content, and diameter of tracheas belonging to the roots. This study indicates that the most likely tolerant and adaptive species to drought are those that have the most variation of mechanisms to respond in which these characters would likely to appear at higher level of stress condition.

Kata Kunci

Drought; trees species; growth, proline; anatomy

Article Metrics

Abstrak view : 621 times
PDF downloaded - 1099 times

Teks Lengkap:



Allen, CD. (2010). Drought-induced tree mortality: global interview of patterns and emerging climate change risks for forests, JA Parrota dan MA Carr. Eds. The International Forestry Review. XXIII IUFRO World Congress, Forest for the future: sustaining society and the environment, 23-28 Agustus 2010. Seoul, Republic of Korea.

Anonim, (2007). Rencana Aksi Nasional dalam Menghadapi Perubahan Iklim. Jakarta: Kementerian Lingkungan Hidup. 1-13p.

Ashraf, M., and M.R. Fooland. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.

Atwell, B., P. Kriedemann dan C. Turnbull (2003). Plants in Action: Adaptation in Nature performance in cultivation, Melbourne, Australia: Macmillan Education Australia Pty Ltd.

Bates, LS. (1973). Rapid Determination of Free Proline for water-stresed studies. Plant and soil, 39, 205 -207.

Bhutta,WM., M. Ibrahim, Tahira. (2006). Comparison of water relations and drought related flag leaf traits in hexaploid spring wheat (Triticum aestivum L.). Plant Soil Environ, 52(5), 234–238.

BNPB (2016). Data Bencana Kebakaran Hutan,, URL: Diakses tanggal 13 Juni 2016

BPS (2015). Kawasan Hutan dan Perairan Menurut Provinsi Diakses tanggal 13 Juni 2016

Chenchouni, H. (2010). Drought-induced mass mortality of Atlas cedar forest (Cedrus atlantica) in Algeria, JA Parrota dan MA Carr. Eds. The International Forestry Review, XXIII IUFRO World Congress, Forest for the future: sustaining society and the environment. 23-28 Agustus 2010. Seoul. Republic of Korea.

De Micco, V., and G. Aronne. (2010). Root structure of Rumex scutatus L. growing on slopes. International Association of Wood Anatomists Journal, 31(1), 13–28.

Farooq, M, S.M.A. Basra, A. Wahid, Z.A. Cheema, M.A. Cheema, and A. Khaliq. (2008). Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 194, 325–333.

Hendrati, R.L. (2009). Developing systems to identify and deploy saline and waterlogging tolerant lines of Eucalyptus occidentalis Endl., (PhD Thesis). The University of Western Australia.

Humphreys, M.O., and M.W. Humphreys. (2005). Breeding for Stress Resistance: General Principles. In Abiotic Stresses Plant Resistance Through Breeding and Molecular Approach (Chapter 2). (Ashraf M dan Harris P.J.C Eds.), Food Production Press. An Imprint of The Haworth Press. Inc. Oxford.

IPCC, 2007. Climate Change. (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds) Cambridge University Press, Cambridge, UK.

Jaleel, C.A., P. Manivannan, A. Wahid, M. Farooq, R. Somasundaram, and R. Panneerselvam. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural and Biology, 11, 100–105.

Kurniasari, A.M., Adisyahputra dan R.Rosman (2010). Pengaruh Kekeringan pada Tanah Bergaram Nacl terhadap Pertumbuhan Tanaman Nilam. Buletin Penelitian Tanaman Rempah dan Obat, 21(1), 18- 27.

Lapanjang, I., B.S. Purwoko, S.W. Hariyadi, Budi dan M. Melati. (2008). Evaluasi beberapa Ekotipe Jarak Pagar untuk Toleransi Tanaman Kekeringan. Buletin Agronomi, 36(3), 263-269.

Lestari, E.G. (2006). Hubungan antara kerapatan stomata dengan ketahanan kekeringan pada somaklon pada Gajah Mungkur, Towuti dan IR 64. Jurnal Biodiversitas, 7, 44-48.

Martinez, J.P., H. Silva, J.F. Ledent and M. Pinto. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26, 30–38.

Makbul, S., N.S. GÜLER, N. Durmus and S. GÜVEN (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany. 35, 369-377.

Naiola, B.P. (2005). Akumulasi dan regulasi osmotik dalam sel tumbuhan pada kondisi stres Air. Berita Biologi, 7(6), 333-340.

Nam, N.H., Y.S. Chauhan and C. Johansen (2001). Effect of timing of drought stress on growth and grain yield of eXtra-short duration pigeon pea lines. Journal of Agricultural Science, 136, 179-189.

Patakas, A., N. Nikoaou, E. Zioziou, K. Radoklou and B. Noitsakis. (2002). The Role of Organic Solute and in Accumulation in Osmotic Adjustment in Drought-stressed Grapevines. Plant Science, 163, 361-367.

Romero, M., A. Casanova, G. Iturra, A. Reyes, G. Montenegro and M. Alberdi (1999). Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411-425.

Salisbury, F.B., dan C.W. Ross. (1995). Fisiologi Tumbuhan Jilid 3 (Edisi Bahasa Indonesia). Bandung: Penerbit ITB (Institut Teknologi Bandung).

Sivakumar, M.V.K. (2005). Impacts of natural disasters in agriculture, rangeland and forestry: an overview. 1-22p In: (M.V.K. Sivakumar, R.P. Motha and H.P. Das eds.) Natural Disasters and Extreme Events in Agriculture. Berlin: Springer.

Steffen, W., A. Burbidge, L. Hughes, R. Kitching, D. Lindenmayer, W. Musgrave, S.M. Stafford, dan P. Werner. (2009). Australia : Biodiversity and Climate Change: Summary for Policy Makers. Summary of a report to the Natural Resource Management Ministerial Council Prepared for the Australian Government by the Biodiversity and Climate Change Expert Advisory Group. Department of Climate Change. Canberra.

Wullschleger, S.D., T.M. Yin, S.P. DiFazio, T.J. Tschaplinski, L.E. Gunter, M.F. Davis, and G.A. Tuskan. (2005). Phenotypic variation in growth and biomass distribution for two advanced-generation pedigrees of hybrid poplar. Canadian Journal of Forest Research, 35, 1779–1789.

Yoshiba, Y., T. Kiyosue, K. Nakashima, S. Yamaguchi, and K. Shinozaki. (1997). Regulation of Levels of Proline as an Osmolyte in Plants Underwater Stress. Plant & Cell Physiology, 38, 1095-1102.

Zhao C.X., L.Y. Guo, C.A. Jaleel, H.B. Shao, and H.B. Yang. (2008). Prospects for dissecting plant-adaptive molecular mechanisms to improve wheat cultivars in drought environments. Comptes Rendus Biology, 331, 579–586.


  • Saat ini tidak ada refbacks.