Open Journal Systems

Cover Image

Factors causing the death of Kabesak (Acacia leucophloea Roxb. Willd.) seedlings in the monsoon tropical forest of Timor Island

Arnold C Hendrik, Novi Ivonne Bullu

Abstract

Regeneration of kabesak (Acacia leucophloea) in the primary forest of the Timor Island regenerationis dominated by tree stands than seedlings and saplings. Seedling and sapling supplies are very important for regulating or maintaining plant populations and their adaptation to environmental changes. This study aims to determine the effect of shades, herbivores, and seedlings height on the survival and growth of Kabesak seedlings in natural forests in Timor Island. The research was conducted in dry season, from July to December 2020. The stages in this study were determining the research location and selecting kabesak seedlings that grew in nature, marking and measuring of height of the selected kabesak seedlings. Data collection was done eight times with interval of three weeks including number of dead seedling and number of leaves for live seedlings. The results showed that the presence of shade can reduce the effects of drought, thereby increasing the survival of seedlings in the natural habitat of deciduous tropical forests. Apart from shading factors, seedling height during the dry season also affect the survival of kabesak seedlings, where there was no dead seedling with 15 cm or more height. The herbivores in this study were not found to be the main cause of death for seedlings. To ensure the survival of kabesak seedlings in their natural habitats, it is necessary to avoid kabesak seedlings < 15 cm from the effects of long-term drought, as well as from herbivores and fires.

Keywords

Seedling survival; drought; shade; herbivore; kabesak

Article Metrics

Abstract view : 92 times
PDF downloaded - 40 times

Full Text:

PDF

References

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.

Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A., & Huxman, T.E. (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought. Proc Natl Acad Sci USA, 106, 7063–7066.

Badan Meteorologi Klimatologi dan Geofisika (2020). Data Online BMKG. Diunduh tanggal 11 Januari 2021 dari https://dataonline.bmkg.go.id

Brenes-Arguedas, T., Roddy, A., Coley, P. & Kursar, T. A. (2011). Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia, 166, 443–456.

Budiman, B., Sudrajat, D.J., Lee, D.K., & Kim, Y.S. (2015) Effect of initial morphology on field performance in white jabon seedlings at Bogor, Indonesia. Forest Science and Technology, 11(4), 206-211.

Castanha, C., Torn, M.S., Germino, M.J., Weibel, B., & Kueppers, L.M. (2012): Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site. Plant Ecology & Diversity, 6(3-4), 307-318.

Chai, Z., Fan, D., & Wang, D. (2016). Environmental factors and underlying mechanisms of tree community assemblages of pine-oak mixed forests in the Qinling Mountains, China. Journal of Plant Biology. 59, 347-357.

Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C. & Clair, B.St. (2011). Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management. Forest Ecology and Management 261, 1121–1142.

Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, D.C., D’Amato, A.W., Davis, F.W., Hersh, M.H., Ibanez, I., Jackson, S.T., Matthews, S., Pederson, N., Peters, M., Schwartz, M.W., Waring, K.M., & Zimmermann, N.E. (2016). The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 22(7), 2329–2352.

Correia, A.H., Almeida, M.H., Branco, M., Tome, M., Cordero Montoya, R., Di Lucchio, L., Cantero, A., Diez, J.J., Prieto-Recio, C., Bravo, F., Gartzia, N., Arias, A., Jinks, R., Paillassa, E., Pastuszka, P., Rozados Lorenzo, M.J., Silva Pando, F.J., Traver, M.C., Zabalza, S., Nobrega, C., Ferreira, M., Orazio, C., (2018). Early survival and growth plasticity of 33 species planted in 38 Arboreta across the European Atlantic area. Forests, 9(10), 630.

Crausbay, S.D., Higuera, P.E., Sprugel, D.G., & Brubaker, L.B. (2017). Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Ecology. 98(9), 2356–2369.

Damayanti, R.U., & Sudrajat, D.J. (2019). Korelasi karakteristik bibit nyamplung (Calophyllum inophyllum L) dengan pertumbuhan tanaman pada tingkat lapang. Jurnal Wasian, 6(1), 45-55.

Dodson, E.K., & Root, H.T. (2013). Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. Forest Ecology and Management 302, 163–170.

Donath, T.W., & Eckstein, R.L. (2010). Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecology, 207, 257– 268.

Dyderski, M.K., & Jagodziński, A.M. (2019). Seedling survival of Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. Forest Ecology and Management, 450, 1-10.

Gailing, O. (2013). Differences in growth, survival and phenology in Quercus rubra and Q. ellipsoidalis seedlings. Dendrobiology, 70, 73–81.

Gaviria, J., Turner, B. L. & Engelbrecht, B. M. (2017). Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8(2), e01712.

Han, A.R., Kim, H.J., Jung, J.B., & Park, P.S. (2018). Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. Forest Ecology and Management 429, 579–588.

Hartmann, H., Ziegler, W., & Trumbore, S. (2013) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27(2), 413–427.

Hendrik A. C, Kusmana, C., & Muhdin. (2019). Stand and site characteristics of kabesak (Acacia Leucophloea) in Timor Island, East Nusa Tenggara, Indonesia. Jurnal Penelitian Kehutanan Wallacea, 8(2), 147–157.

Holmgren, M., Gómez-Aparicio, L., José Luis Quero, J.L., & Valladares, F. (2012). Non-linear effects of drought under shade: Reconciling physiological and ecological models in plant communities. Oecologia 169, 293–305.

Irawan A, Hidayah H.N., & Mindawati, N. (2019). Pengaruh perlakuan cekaman kekeringan terhadap pertumbuhan semai cempaka wasian, nantu, dan mahoni. Jurnal Penelitian Kehutanan Wallacea, 8(1), 39–45.

Kleinbaum, D.G., & Klein, M. (2005). Survival Analisysis: A Self-Learning Text (2nd ed). New York: Springer.

Laurent, L., Mårell, A., Balandier, P., Holveck, H., & Saïd, S. (2017). Understory vegetation dynamics and tree regeneration as affected by deer herbivory in temperate hardwood forests. iForest - Biogeosciences and Forestry, 10(5), 837-844.

Leonardsson, J., Lof, M., & Gotmark, F. (2015). Exclosures can favour natural regeneration of oak after conservation-oriented thinning in mixed forests in Sweden: a 10-year study. Forest Ecology and Management, 354, 1-9.

Li, F.L., Bao, W.K., & Wu, N. (2009). Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry System, 77, 193–201.

Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., & Luce, C.H. (2016). A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7), 2353–2369.

Montes-Hernández, B., & López-Barrera, F. (2013). Seedling establishment of Quercus insignis: A critically endangered oak tree species in southern Mexico. Forest Ecology and Management, 310, 927–934.

Palacio, S., Hoch, G., Sala, A., Körner, C., & Millard, P. (2013). Does carbon storage limit tree growth? New Phytologist, 201(4), 1096–1100.

Pamungkas, D., Eiichiro, N., Ohta, S., Kurniawan, H., Puspiyatun, R.Y., Prasetyo, N.A & Umroni, A. (2015). Daya adaptasi spesies rehabilitasi terhadap kebakaran di Kabupaten Kupang. Prosiding Seminar Nasional Biodiversitas Savanna Nusa Tenggara. Kupang 24 November 2015. 234-245.

Pardos, M., Climent, J., Almeida, H., Calama, R. (2014). The role of developmental stage in frost tolerance of Pinus pinea L. seedlings and saplings. Annals of Forest Science, 71, 551–562.

Reilly, M.J., Dunn, C.J., Meigs, G.W., Spies, T.A., Kennedy, R.E., Bailey, J.D., & Briggs, K. (2017). Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010). Ecosphere, 8(3), e01695.

Stavros, E.N., Abatzoglou, J., Larkin, N.K., McKenzie, D., & Steel, E.A. (2014). Climate and very large wildland fires in the contiguous western USA. International Journal of Wildland Fire, 23(7), 899–914.

Syamsuwida, D., Bustomi, S., Putri, K.P., & Yunita, M. (2014). Pendugaan produksi benih pilang (Acacia Leucophloea (Roxb.) Wild) di Taman Nasional Bali Barat (TNBB) dan Soe-Kupang. Prosisding Seminar Nasional Silvikultur II “Pembaruan Silvikultur untuk Mendukung Pemulihan Fungsi Hutan menuju Ekonomi Hijau”. Yogyakarta, 28-29 Agustus 2014. hal. 422-428.

Takoutsing B, Tchoundjeu Z, Degrande A, Asaah E, Gyau A, Nkeumoe F, & Tsobeng A. (2013). Assessing the quality of seedlings in small-scale nurseries in the Highlands of Cameroon: The use of growth characteristics and quality thresholds as indicators. Small-Scale Forestry, 13, 65-77.

Tepley, A.J., Thompson, J.R., Epstein, H.E., & Anderson-Teixeira, K.L. (2017). Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Global Change Biology, 23(10), 4117–4132.

Tsakaldimi, M., Ganatsas, P., & Jacobs, D.F. (2013). Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New Forests, 44, 327–339.

Vergara-Tabares, D.L., Badini, J., & Peluc, S.I., (2016). Fruiting phenology as a “triggering attribute” of invasion process: Do invasive species take advantage of seed dispersal service provided by native birds? Biological Invasions. 18, 677–687.

Wang, Q., Zhao, C., Gao, C., Xie, H., Qiao, Y., Gao, Y., Yuan, L., Wanga, W., Ge, L., & Zhang, G. (2017). Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients. Forest Ecology and Management, 384, 54–64.

Yang, B., Peng, C., Zhu, Q., Zhou, X., Liu, W., Duan, M., Wang, H., Liu, Z., Guo, X., & Wang, M. (2019). The effects of persistent drought and waterlogging on the dynamics of nonstructural carbohydrates of Robinia pseudoacacia L. seedlings in Northwest China. Forest Ecosystems, 6(23), 1-17.

Refbacks

  • There are currently no refbacks.