Open Journal Systems

Cover Image

Tetraploid teak seedling was more tolerant to drought stress than its diploid seedling

Ridwan Ridwan, Tri Handayani, Indira Riastiwi, Witjaksono Witjaksono


The demand of teak (Tectona grandis L.f.) wood for the national industry can only be fulfilled about 0.75 million m3/year from 2.5 million m3/year which is caused by the long of harvesting time and the derivation of suitable land for teak due to climate change. Indonesia has a wide area of dry land to develop teak plant, so that, fast growing and drought resistant teak seedling is needed. The aim of this research was to compare the resistance of tetraploid and diploid teak clone to drought stress. The research was conducted in the greenhouse using Randomized Block Design with two factors and 9 replications. The first factor was clone i.e. diploid (2x) and tetraploid (4x). The second factor was drought stress levels consisted of 5 watering intervals i.e. 3 days, 7 days, 14 days, 21 days, and watering only at the treatment began. Plant height, stem diameter, number of leaves, leaf area, leaf thickness, leaf water potential, stomata, root system, and plant dry weight were observed to evaluate the plant growth. The result showed that the growth of both tetraploid and its diploid seedling clones were declined under drought stress. However, the growth of tetraploid seedling is better than its diploid seedling.


Teak; diploid; tetraploid; drought stress

Article Metrics

Abstract view : 688 times
PDF (Bahasa Indonesia) downloaded - 558 times


Adu-Bredu S., A.F. Tape Bi., J.P. Bouillet., M. Kouame., S.Y. Kyei., and L. Saint-Andre. (2008). An explicit stem profile model for forked and un-forked teak (Tectona grandis) trees in West Afric. Forest Eco and Manag, 255, 2189-2203.

Bermejo I., I. Canellas., and A.S. Miguel. (2004). Growth and yield models for teak plantations in Costa Rica. Forest and Ecology Management, 189, 97-110.

Chandra A., and A. Dubey. (2010). Effect of ploidy levels on the activities of D1-pyrroline-5-carboxylate synthetase, superoxide dismutase and peroxidase in Cenchrus species grown under water stress. Plant Physiology and Biochemistry, 48, 27–34.

Efansyah M.N., M.H. Bintoro., dan W.H. Limbong. (2012). Prospek usaha bagi hasil penanaman jati unggul nusantara (studi kasus pada koperasi perumahan Wanabhakti Nusantara di Kabupaten Bogor). Manajemen IKM, 7 (1), 64-73.

Gallone A., A. Hunter., and G.C. Douglas. (2014). Polyploid induction in vitro using colchicine and oryzalinon Hebe ‘Oratia Beauty’: Production and characterizationof the vegetative traits. Scientia Horticulturae, 179, 59–66.

Helaly M.N., H. El-Hoseiny., N.I. El-Sheery., A. Rastogi., H. M. Kalaji. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry 118 (2017) 31-44.

Hendrati R.L., D. Rachmawati and A.C. Pamuji. (2016). Respon kekeringan terhadap pertumbuhan, kadar prolin dan anatomi akar Acacia auriculiformis Cunn., Tectona grandis L., Alstonia spectabilis Br., dan Cedrela odorata L. Jurnal Penelitian Kehutanan Wallacea, 5 (2), 123-133.

Hummer K.E. (2015). The Discovery and Naming of the Cascade Strawberry (Fragaria cascadensis Hummer). Kalmiopsis, 21, 26 – 31.

Izekor D.N., and J.A. Fuwape. (2011). “Performance of teak (Tectona grandis L.F) wood on exposure to outdoor weather conditions. J. Appl. Sci. Environ. Manage, 15(1), 217-222.

Lambers H., F.S. Chapin III., and T.L. Pons. (1998). Plant Physiological Ecology. Springer-Verlag, New York.

Lapanjang I., B.S. Purwoko., Hariyadi., S.W.R. Budi., dan M. Melati. (2008). Evaluasi Beberapa Ekotipe Jarak Pagar (Jatropha curcas L.) untuk Toleransi Cekaman Kekeringan. Bul. Agron, 36 (3), 263–269.

Li W.D., X. Hu., J.K. Liu., G.M. Jiang., O. Li., and D. Xing. (2011). Chromosome Doubling Can Increase Heat Tolerance in Lonicera japonica as Indicated by Fluorescence Imaging. Biologia Plantarium, 55 (2), 279–284.

Li W.L., G.P. Berlyn., and P.M.S. Ashton. (1996). Polyploids and Their Structural and Physiological Characteristics Relative to Water Deficit in Betula papyrifera (Betulaceae). American Journal of Botany, 83 (1), 15–20.

Liu S., S. Chen., Y. Chen., Z. Guan., D. Yin., and F. Chen. (2011). In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Scientia Horticulturae, 127, 411–419.

Pramasari D.A., I. Wahyuni., D.S. Adi., Y. Amin., T. Darmawan., dan W. Dwianto. (2014). Effect of Age on Chemical Component of Platinum Teak Wood – A fast Growing Teak Wood from LIPI. Proceedings of The 6th International Symposium of IWoRS, Medan, Indonesia, pp. 211-216.

Rahayu E.M.D., D. Sukma., M. Syukur., dan Irawati. (2015). Induksi poliploidi Phalaenopsis amabilis (L.) Blume dan Phalaenopsis amboinensis J. J. Smith dengan kolkisin dalam kultur in vitro. J. Agron. Indonesia, 43 (3), 219–226.

S.E. Jacobsen, F. Liu, C.R. Jensen. (2009). Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Scientia Horticulturae, 122, 281–287.

Saravanan V., K.T. Parthiban., R.Thirunirai., P. Kumar., S. Vennila., and S. Umesh Kanna. (2014). Comparative study of wood physical and mechanical properties of Melia dubia with Tectona grandis at different age gradation. Research Journal of Recent Sciences, 3, 256-265.

Shao H.B., L.Y. Chu., C. Abdul Jaleel., and CX. Zhao. (2008). Water deficit stress induced anatomical changes in higher Plants. C. R. Biologies, 331, 215–225.

Skirycz A., and D. Inze. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21, 197–203.

Solichatun., E. Anggarwulan., dan W. Mudyantini. (2005). Pengaruh Ketersediaan Air terhadap Pertumbuhan dan kandungan Bahan Aktif Saponin Tanaman Ginseng Jawa (Talinum paniculatum Gaertn.). Biofarmasi, 3 (2), 47-51.

Song Ai N., dan P. Torey. (2013) Karakter morfologi akar sebagai indikator kekurangan air pada tanaman. Bioslogos, 3 (1), 31-39.

Wang X., H. Wang., C. Shi., X. Zhang., K. Duan., and J. Luo. (2015). Morphological, Cytological and Fertility of A Spontaneous Tetraploid of The Diploid Pear (Pyrus pyrifolia Nakai) Cultivar ‘Cuiguan’. Scientia Horticulturae, 189, 59-65.

Wei P., and C. Lintilhac. (2007). Loss of Stability: a new look at the physics of cell wall behavior during plant cell growth. Plant Physiology, 145, 763–772.

Ye Y.M., J. Tong., X.P. Shi., W. Yuan., and G.R. Li. (2010). Morphological and cytological studies of diploid and colchicine-induced tetraploid lines of crape myrtle (Lagerstroemia indica L.). Scientia Horticulturae, 124, 95-101.

Yunianti A.D. (2012). Porositas kayu jati klon cepu dan madiun umur 7 tahun. Jurnal Perennial, 8 (2), 80-83.

Zhang F., H. Xue., X Lu., B. Zhang., F. Wang., Y. Ma., and Z. Zhang. (2015). Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees, 29, 1773–1780.


  • There are currently no refbacks.