Open Journal Systems

Gambar Sampul

Detection of water abundance in Baluran National Park with landsat satellite imagery analysis

Beny Harjadi


Indonesia is one of the mega-biodiversity countries that have a great responsibility in maintaining the balance of the global climate and forest ecosystems. Drought causes shifting of ecosystems causing disturbances on animal life leading to death of species. Alongside fires in the savanna, drought is a recurrent problem in the park, which occurs every year. This study aims to detect the abundance of water by using satellite imagery in Baluran National Park (BNP). The research analyzed using Landsat satellite imagery ETM7 + in 1999 and 2010 and three (3) main factors that have great potential abundance of water, are: (1) plant density (GI = Greenness Index), (2) soil moisture (WI = Wetness Index), and (3) soil conditions (SBI = Soil Brightness Index). Three factors are summed and divided by three to get 5 levels of water abundance: 1) Very abundant, 2) Abundant, 3) Medium, 4) Few, and 5) Very little. The results showed that the abundance of water decreased between 1999 and 2010 for moderate conditions from 85% to 38%, if the abundance of low water (slightly) increased from 15% to 60%. The level of accuracy of the abundance of water in the field of more than 80% is exactly 91%. The extreme drought conditions will be very dangerous for the survival of flora and fauna in Baluran National Park that are in desperate need of water and potentially in danger of a fire. Construction of water reservoirs and water supply continuously using a water tank in the dry season is very necessary in the Baluran National Park.

Kata Kunci

Baluran; satellite imagery; drought; abundance of water; the national park

Teks Lengkap:



(PEH) Pengendali Ekosistem Hutan. (2006). Laporan Kegiatan Pengendali Ekosistem Hutan. Pengumpulan Data dan Informasi Produktivitas Savana Bekol pada Musim Kemarau (Laporan). Situbondo.

Antara, K. (2016). 55 hektar hutan Taman Nasional Baluran (TNB) terbakar. Antara News, p. 1. Situbondo, Jawa Timur. Minggu, 11 September 2016 15:47 WIB.

Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (2008). Climate Change and Water. Climate change and water.

Cox, R. S., & Perry, K. M. E. (2011). Like a Fish Out of Water: Reconsidering Disaster Recovery and the Role of Place and Social Capital in Community Disaster Resilience. American Journal of Community Psychology, 48(3–4), 395–411.

Guo, H., Huang, Q., Li, X., Sun, Z., & Zhang, Y. (2013). Spatiotemporal analysis of urban environment based on the vegetation–impervious surface–soil model. Journal of Applied Remote Sensing, 8(1), 1–16. Retrieved from

Hadi, B. S. (2008). Diklat Kuliah Geografi Regional Indonesia. Universitas Negeri Yogyakarta. Jogyakarta: (Tidak dipublikasikan).

Hendrati, R. L., Rachmawati, D., & Asri Cahyaning Pamuji. (2016). Respon Kekeringan Terhadap Pertumbuhan, Kadar Prolin dan Anatomi Akar Acacia auriculiformis Cunn., Tectona grandis L., Alstonia spectabilis Br., dan Cedrela odorata L. Jurnal Penelitian Kehutanan Wallacea, 5(2) 123-133.

Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479–485.

Huang, C., Wylie, B., Yang, L., Homer, C., & Zylstra, G. (2002). Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23(8), 1741–1748.

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052–1055.

Loppies, R. (2010). Analisis Penutupan Penggunaan Lahan Menggunakan Klasifikasi Kemiripan Maksimum (Maximum Likelihood Classification) di Pulau Saparua dan Molana, Kecamatan Saparua. Jurnal Agroforestri, 5(1), 3–9.

Mustafa, A. A., Singh, M., Sahoo, R. N., Ahmed, N., Khanna, M., And, A. S., & Mishra, A. K. (2009). Mapping of Degraded Lands from Multidate Remotely Sensed Data Using Decision Tree Based Classification ( DTC ). Soil Science and Agricultural Chemistry, 3(1), 1–22.

Neri, A. V., Schaefer, C. E. G. R., Souza, A. L., Ferreira-Junior, W. G., & Meira-Neto, J. A. A. (2013). Pedology and plant physiognomies in the cerrado, Brazil. Anais Da Academia Brasileira de Ciencias, 85(1), 87–102.

Olusegun, C. F., & Adeyewa, Z. D. (2013). Spatial and Temporal Variation of Normalized Difference Vegetation Index (NDVI) and Rainfall in the North East Arid Zone of Nigeria. Atmospheric and Climate Sciences, 3(4), 421–426.

Purwanto, A. D., Asriningrum, W., Winarso, G., & Parwati, E. (2014). Analisis Sebaran dan Kerapatan Mangrove Menggunakan Citra Landsat 8 di Segara Anakan, Cilacap. Seminar Nasional Penginderaan Jauh, 21 April 2014, p232–241.

Qin, C. Z., Zhu, A. X., Pei, T., Li, B. L., Scholten, T., Behrens, T., & Zhou, C. H. (2011). An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture, 12(1), 32–43.

Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 11(5), 22-36.

Wang, K., Franklin, S. E., Guo, X., & Cattet, M. (2010). Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors, 10(1), 9647-9667.


  • Saat ini tidak ada refbacks.